Module: meet in the middle


Problem

1 /5


Modulo maximum subsequence

Theory Click to read/hide

Meet-in-the-middle
Meet-in-the-middle - a way to optimize solutions, which consists in breaking the original problem into two halves, solving each independently, and then obtaining a solution to the original problem by combining the solutions of the halves.

Accordingly, it makes sense to use meet-in-the-middle if two conditions are met.
1) The time required to solve half of the problem is asymptotically less than the time to solve the whole problem.
2) By solving half-problems, one can obtain solutions to the original whole problem and, at the same time, asymptotically faster than just solving the whole problem.
 
Example
Let there be four arrays of integers A, B, C and D. It is necessary to select exactly one number from each array so that the sum of these numbers is equal to zero. You can use a naive solution, namely, simply enumerate all possible options. This will work for O(n4).

However, we can use meet-in-the-middle.
Note that a + b + c + d = 0 is equivalent to (a + b) = -(c + d).
Let's divide the task into two halves, namely, in the first half we will use only arrays A and B, and in the second half only C and D.
Let's iterate over all the possible (a + b) options in the first half and store all the values ​​in a hash table (unordered_map, HashMap or the like. ). This works in O(n2).
Now we will iterate over all possible options (c + d) in the second half. When considering a certain option, we will check if there is a value in the hash table associated with the current sum of the opposite sign (then we found two reciprocals that add up to zero). This part also works in O(n2).
We don't have a separate "answer merge" phase here; in one, we did this in the course of solving for each of the halves. Most tasks will have a similar situation.
We ended up with a solution in O(n2) using meet-in-the-middle.

It is worth noting that meet-in-the-middle is most often used when optimizing exponential solutions, which significantly affects the running time.

Problem

Given an array A consisting of n positive integers and a number m. Select the sequence of positions B 1, B2, ..., Bk (1 <= B1 < B2 < ... < Bk <= n) such that   ; \((\sum_{i=1}^{k} A_{B_i}) mod \; m\) was the maximum (that is, so that the remainder of dividing the sum of the elements of the subsequence by the number m is the maximum possible). The selected sequence can be empty.
Calculate the maximum possible value of \((\sum_{i=1}^{k} A_{B_i}) mod \; m\).

Input
The first line contains two integers n and m (1 <= n <= 35, 1 <= m <= 109). The second line contains n integers A1, A2< /code>, ..., An (1 <= Ai <= 109 )

Imprint
Output one number - the maximum value \((\sum_{i=1}^{k} A_{B_i}) mod \; m\)

 
Examples
# Input Output
1 4 4
5 2 4 1
3
2 3 20
199 41 299
19
 
Explanations
In the first example, you can choose B = {1, 2}. (A1 + A2) mod m = (5 + 2) % 4 = 3.
In the second example, you can select B = {3}.