Let us denote by
DIV(n, m) the statement "
a natural number n is divisible without remainder by a natural number m". For what is the smallest natural number
A< /code> boolean expression
\((DIV(x, 7) \rightarrow \neg DIV(x, 10)) \vee (x+A\ geq 100)\)
identically true (i.e. takes the value 1) for any integer natural value of the variable х
.