Let us denote by
DIV(n, m) the statement "
a natural number n is divisible without remainder by a natural number m". For what is the smallest natural number
A< /code> boolean expression
\((x < 100) \rightarrow ((\neg DIV(x, 3) \wedge \neg DIV(x , 4))\rightarrow DIV(x, 5)) \vee (x+A\geq 60)\)
identically true (i.e. takes the value 1) for any integer natural value of the variable х
.